


S(2,9,1) = ¢“s(1)8(x — z,)6(y - ws)

u(z,y,1) = 0 r,yefd and 0 <t <7
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. - t - -
Q(i) — e(A6,+I?6,)lQ(O) + / 8(1&6,4116y)(1-~1)},'(1) dr
0

let Q™) and F(™)

Q(m) — e(Az,.-fI’z,)A!Q(n;-rl)_{r %(PV(YI))_{ F(m-]))At m=1to M

_ _ 0 26, c?éy
E=(Abé: 4+ Bé)= | & 0 0
by 0 0

with Q(® = 0. Defining

we then have :
QU™ = eharQim-1) 4 5(}“("‘) 4+ FOr=1)A¢ m=1ltoM



A. Approximation Techniques for Computing Malriz Erponential

In our derivation we make usc of the following properties of matrix cxponcutial. The power series definition of
exponential of a matrix, say 6, is given by

e =T404 %iog + 3110% v;!-o“‘; - (3.1
from which it follows that if 6 =V¢V~' ie, if # is a Smilarity transformation of ¢, then

e Vetv-! (3.2)
Now, consider a splittingof Oasl == 014 0. If 8, and 92 commnute then

(_GAt . 601 Ateol At

If 61 and 02 do not commute then first- and seccmd-order approximations of ¢ #4*are given by [6]
CGAt — CO,AteogAt 4 O((At)y) : (3_3)

and
eom . c:}e,mce,mego,m + O((Al)a) (3.4)

In the following, we concentrate on the second-order temporal approximation given by (3.4). Higher-order approxima-
tions will be discussed in §V.C. Note that, the approximationin (3.4) is not unique. In§V1.C, a different second-order
approximation with a greater efliciency for parallel computation is discussed. It should be also mentioned that there
arc other methods for approximation of matrix exponential. } or example,there is a class of Pade approximation
techniques, with various degree of accuracy, for computing matrix exponential. However,these Pade approxirnations
either result in explicit methods with conditional stability or inimplicit methods with unconditional stability but
demanding large linear system solution.

B. Temporal and Spatial Discretizations
From (3.4) a second-order temporal approximation of (2.17) is obtained as
Q(m) - eéx,AteBEyAtc‘,fg,AtQ(m-—l) 4 %(},-(m) + F(m»—l))At m=1to M (3.5)

For spatial discretization of (3.5), let us superimpose auniforn‘ngridwithA:zt::Ay:—"ﬁlﬁ'on“lcspatialdomaina-
Again, wc first consider a second-order accurate spatialdiscretization (higher order discretizations will be discussed in

. . . . f r . . . . . 3
§V.B). With this grid size, @™ and F{™) are 3N? vectors and c isadiagonalmatrix givenby c :I)lag{c,-,-}séft"’a"” .
Also,

g™ = Col{q,g?)}v pi™ = Col{pg")}, () .- ()ol{rg?')}, and f") = Col{f‘(jm)}5?)?”2 iandj=1toN
wherein, for cxample,qgn) represents the approximate solution for point (1A=, jAY) a the mth time step and c¢i;
denotes the velocity at the same point. The above representat ion implies an ordering of the vectors elements first
in the direction of z (i) and then in the direction of y(j). With this ordering and using a second-order centered
finite-difference approximation, the operators éz and éy arc given by
1

— 1 < — L. popt
bx = —?2\25 and éy = 2Ax1 S (3.6)
wherein t indicates the transpose,
S =Diag{S, s ....S}eRN N with S = Tridiag(l, O, - 1] RNV, 3.7)
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and PeRN**N" is a permutation matrix that arisesin 2D discrete Fourier transform. Specifically, if the two vectors
V and WeRN are defined as V = Col{V;;} and W : Col{W;;}, for iandj= 1 to N, then V =PW implies that
Vij= W,. Also, P1 = P! since 1’ is a permutation matrix and hence orthogonal. The matrices %&At and 133yAi

in (3.5) can be written as
0 prsrt
O 0 O (39

0 ¢*S0 0
PSPt 00

At =a S O 0 and BSAL:=2a
o 0 0

where a:f&';.r‘rom the property of matrix F it follows that

PSP PP PSP = PPS !

where ¢’ is obtained from c through the permutation ¢’ = PeP' which imnplies that ¢; = ¢;5, for i and j = 1to N.
. = . ' T N < S . <
let us define a permutation matrix Py = Diag{P, 1, P}e§f§3"2>‘3"’7 with P,y = P;l. The matrices %}6,At and

By At can now be written as
A

'2'31At = 01“/'1 and ]foAt = ?a?711'}273;, (39)
where -
0 ¢S 0 0 0 ¢?5S
Ey={5% 0 0} andE,={0 0 o0 (3.10)
0 0 0 S5 0 0

Our subsequent derivation can be further simplified by noting that the matrix /2 can be reduced to a form similar

to E;.To this end, consider a permutation matrix Poye RN XN given by
] 1 00
Pypz 001
(010,
It can be then shown that . —
})22}';2})22 = ]’,‘; (311)

where

0 ¢*8 o
El=[5 0 0
0O 0 O

Defining another permutation matrix P,y given by

~ o P 00
Py=Pyuly,= {0 0 I (3.12)
o r o/
it then follows from (3.9) and (3.11) that
HE AL L 20 E T, Pye2efip) (3.13)
Equation (3.5) cannow be written as
Q(m) - M]}—;ZM??;;MIQ(')HI) 1 %(F(m) + F(m» 1))At m=1to M (314)

3 o
where MI =e*Fr and Mz == e?eFr,




where 1)y = ¢“¢ and

2]

"

—

-0 O

oo

0 0 -1 0 0
0 0 0 1 0
0 and S = : .. . :
: 0O 0 ... 0 -1
0 0 0 0 0

CY(;“ . })1117'])]1

(3.17)



where
O = Diag{0,,,012, . .., O1n-1,1,021,022, . ., On_1,1,. On1,. .  Onnoy, i} (3.24)

with ©ij=¢T5. Note that © is aso a block diagonal matrix with 2 by 2 submnatrices 011 its main diagonal. The
computation of matrices ©;; is discussed in the next section.

A similar procedure can be used for reducing matrix Giz2to a blqck dlagonal form. Again, consider the two
vectors V and W as defined before and a permutation matrix I’12¢ R2Y X2N* wherein W = P12V implies that

Vyag st if i is odd

W= { N
Vi if 1is even
2

with Wans =- V. It can be then shown that o
8 Gy = Plaktir (3.25)

where ReR2V’ 2N is a block diagonal matrix with 2 by 2 submat1 ices on its diagona as

R=Diag{Rys, I3, ... I1N,O, R22,Ras, ... .R2N,0,.... Kn2....  ENN,0} (3.26)
with 0 :
O -
From (3.25) and (3.26), it follows that
eC1s = Pl¥ 1y, (3.28)
where
\ I)iag{‘]’lz, ‘]’13; e W]N,Ia ‘]’?'17 \]’239 e \IlQNy 1)- L \]’NQ. . ;‘I’NN)I} (329)

with Wi =Re Thus the matrix ¥ is also block diagonal with 2 by 2subinatrices Wi; on its main diagonal. ‘I'he

computation of matrices ¥i; is discussed in the scction. From (3.19), (3.23), and (3.28) the matrix D1 is given as a
product of a set of sparse matrices

Dy = PLY P PLO 181V P (3.30)
The matrix M2 can be computed in a similar fashion as that of My by replacing ¢ with ¢, i.e, ¢, with cji, and

a with 2cr. Briefly, wc have
(D 0
My = ( o ,) (3.31)

Dy w ¢2061 . 061, (2060 (aGly . PLW P PO Py PV Py (3.32)
where ¥'and©' arc obtained from ¥ and ©by replacing cij with ¢;; and o with 2a.
IV. Stability and Efliciency of the Method
A. Unconditional Stability
Y¥or thc stability analysis of the method we consider the .Jz2 norm of matrix
M = M]?;QM?};;MI (4.1)

The unconditional stability of the mcthod follows from the fact that||M]| <Iwhich is established as follows. 10

begin, note that the operation P2M 2P2 represents a similarity transformation of matrix M2 which preserves its
norm. Also, consider the following property of matrix norm as

1481 < 11ANBI (4.2)

7




Kiij = (T3 -+ 1 ( 0 - B
1= gy 01)

R RS
7ij 0

(=20

Koy =

B =

Kyii Caii
Oy = ¢ 3 K3

(4.9)






1
= Qorp-| ;an

1
Oorr+;q--0

Oorr--

1
10

7,y and 0<L < T
7,y and 0 <1 KT

7, yEyand 0 <1 <7

(5.3a)
(5.3b)

(5.3¢)



The boundary conditions in (5.3) is aso incompatible with our method. However, unlike the Fourier methods,
this incompatibility does not arise from the choice of operator for spatial discretization but rather from the technique
employed for tempora discretization. Although (2.5)-(2.6) represent first- order hyperbolic equations, they are derived
from the sccotld-order equation in (2.1) and thus there seems to be no solution for a direct incorporation of (5.3)
into (2.5)-(2.6). An obvious aternative for handling the absorbing boundary conditions in our method is then to usc
the same boundary strip technique as for the Fourier methods.

However, an interesting question is whether there are other absorbing boundary conditions more compatible
with our method. Our above discussion clearly suggests that the second-ordct boundary conditions such as the one
discussed in [1 O] arc compatible with our method. Forexample,on the boundary €4 such boundary condition is
given by

1 c
wy + St gty © 0 (5.4

which, using our notation, it can be written as
1 c
9t 4x 5Ty = 0 (5.5

Equations (2.5)-(2.62 and (5.5) can now be combined and written in a compact formas (2.9) with dlightly different
matrices Aé; and B6,.However, further analysis is needed for aneflicient incorporation of this second-order boundary
condition. More precisely, splitting techniques need to be devised which prescrve both the stability and efficiency of
the method.

Another absorbing boundary condition highly compatible with our mnethod is the Damping Technigue suggested
in [1 9]. This technique is similar to [18] in the sense that it also include boundary strips but differs from [18] by
writing (2.1) as

Upg = cz(u“ +ugy) - vug -t f #,yeQand O < 1< T (5.6)

with v(z,y)= O for «,yeQ? and v(z, y) > 0 for x,ysfz where ) isthe boundary strip. The choice of optima function
v(z, y) is further discussed in [19]. Using our notation, (5.6) can be written as

1 = c2(ps + ry)—-vg+ f z,yeland 0 <1 < T (5.7

The computation of (5.7) can be pcrforrncd in a same fashion as (2.5) by simply replacing the matrix F, in (3.10)
with a matrix F; given by

) T 2SO
m= S 0 0 (5.8)
( 0 0O 0 )

where T =Diag{v;;} is a diagonal matrix. Furthermore,vij# O only for grid points belonging to the boundary
strips. A second-order approximation of the exponential of matrix #1is given by

ei"‘ = ereFr 3
The computation of the matrix eFiis performmed as before, The matrix e¥ is diagonal with diagonal elements equal

to or sinaller than 1 which preserves the stability of our method.
In addition to its high compatibility with our method and preserving both the stability and optimality of the

computational cost, another advantage of this technique is that it also allowst i nie-parallel computation of our method
(see below).

1



(v (v—r1)
0 fori>vori:= 0

- {2&-&1’1».11‘“ for |ij| <vandiy 0

v 0 02:§4
Gi= (34 0 )

_ fO 62:9'41 . 0 CTSQ . »40 02;§43 . 0 02344
Gll - (344 0 ) ’ ('12 = (543 0 ) 613 = 542 0 y (’14 = S41 0

The matrix 1y = ¢“C* can be then computed by a repeated application of (3.4) as

Dy = eéacne!,OGmC‘}aGlae&Gue‘%aGnc%OG'me‘EGGn
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The ordering in application of (3.4) is arbitrary and thus severa forms for computing the matrix 12y can be derived.
However, al these forms are equal in terms of accuracy, stability, and computational cost. The matrices Gil, G,
G, and G, have a structure similar to those in (3.18). Therefore, using suitable permutations, they can be reduced
to block diagonal matrices similar to that in (3.21), wherein the 2 by 2submatrices on their main diagonals aso
have a structure similar to that in (3.22). This alows a fast and steble computation of exponential of these matrices
by using the procedure described in the appendix.

Higher order spatial discretization can be treated in a sirnilar fashion by exploiting the skew-symmetric and
Toeplitz structure of the matrix So,,. In general, for an order 2v spatial accuracy, the matrix Sy, is splitted into 2v
matrices. I'bus, the matrix 1)1 is obtained as a product of 2v- 1 sparse mnatrices. It then follows that, for a spatial
accuracy of order 2v, the implementation of (3.14) involves a nuinber of 3(2v -- 1) sparse matrix-vector multiplications
wherein the matrices have a block diagonal structure similar to the matrix O in (3.24) with 2 by 2 submatrices on
their main diagonals. Therefore,the computational cost of the method lincatly increases with the order of spatia
accuracy.

C. Higher Order Temporal Accuracy

Our method can also be extended to include a fourth-order temporal accuracy. Here, we briefly discuss such an
extension to illustrate the possibility of achieving higher order temporal accuracy.

et us again consider a matrix 6 with a splitting as ¢ = 01+ f2 with nonconimuting matrices 6, and 8,. Following
De Raedt [6],afourth-order approximation of matrix e?is given by

3 ] 5
0at _  30:81, 3001, L A 168t 4 6,81 ) O((AL)°)

8. 03 (5.13)

with I, = [0,+ 202, [0,, 02]] and [01,02)=- 0,6,--0101, which represents the commutator operator. A fourth-order
temporal approximation of (2.12) is then given by

Q(m) - egAzxAteglfIS,AtcC(At)’e%A-&,Ateénzme(m»1) 4 _;_(},v(m) 4 plm ‘))At m=1toM (5.14)
where
1 - _ o 0 - 2¢%62c%6,  c?6%c?s,
C = - [Aby + 286y, [Abs, Bby)) = - 28,262 0 0 (5.15)
24 24 P 252y
y €207 0 0

Note that, this splitting allows a fourth-order temporal accuracy while involving only one time level, i.e., only Qim-1),

The key purpose of this derivation is to illustrate that the resulting matrix ¢ hasa sparse structure similar to
the matrix I, given by (2.11). Thus, similar techniques can be used for splitting matrix ¢ and fast computation of
the term e€(A0° However, in order to preserve the fourth-order accuracy, further analysis is needed to derive stable
technique for computing the exponential of the resulting two by two matrices (see $] V. A). To this end, the structure
of matrix C is a key incentive for such further anaysis.

V1. Techniques for Efficient Space and Time Parallel Computation

The computational complexity of (3.14) is a function of bothspace (i.e, number of the spatial grid points) and
time (i.e., number of the time steps). In this sense, tile computation is pcrformcd in two dimensions: space and time.
Thus, onc can consider the exploitation of parallelism in one (i.e., either space or timne) or in both dimensions (i.e,
both space and time). Most conventional approaches for parallel corn put ation of (explicit or implicit) marching-in-
time methods are space-paralel, that is, they attempt to exploit parallelismonly in computation of each time step.
In the following, we first discuss some techniques for a more eflicient space-parallel computation of our method. We
then discuss a technique that allows the computation of our method to be partially parallelized in time.

13




A. Space Parallel Computation

At first glance, the sequence of matrix-vector multiplications for iinplementation of (3.14) seems to be readily
amenable to highly efficient paralel computation. In fact, given the block diagonal structure of matrices ©,0’,
¥, and ¥’, their multiplication by any vector can be decomposed into a set of a large number of submatrix-vector
multiplications, involving 2 by 2 submatrices, which can be performed in a fully decoupled and parallel fashion.
However, such an implementation would require a massive amount of data ““™"npunication for performing various
permutations of vectors which result from matrix-vector multiplic ations involving the permutation matrices 11,

Pl, P12, and Pf,. in particular, on massively paralle MIMD architectures for which the communication latency
is much greater than the cost of floating-point operations, the communication cost of these permutations could be

much greater than the computation cost of the algorithin, thus severely degrading the overall performance of such a
parallel computation.

An obvious but partia solution to this problem is to reduce the number of permutations by combining the
successive permutations in (3.30) and (3.32). That is, by forming a new perinutation matrix as 1= P11 12. Using
Il and its transpose, the number of permutations in (3.30) and (3.32) can be reduced from 12 to 8.

A more eflicient technique for improving the overall performiance of ou r algorithm is based on a tradeoff between
computation and communication cost as follows. l.et us define the matrices:

O =F},0P11 and ¥ :: PLY P, (5.15)

It can be shown that the matrices © and ¥ have a sparse arrd block structure given by
5 (61 O, A T 2
0= (93 @4) and W := (‘1’3 B, (5.16)

where the submatrices ©;, 04, ¥1, and ‘j’4 are diagonal; the submatrices ©2 and ¥3 have nonzero elements only
on their upper diagonal; the submatrices O3 and ¥, have nonzero elements only on their lower diagonal. Taking
advantage of the regular and sparse structure of the matrices © and ¥,it is a rather straightforward task to
exploit parallelism in their multiplication by a vector. This, for example, can be achieved by using some of the
well known techniques for exploitation of paralelism in matrix-vector multiplications arising in conventional explicit
methods. However, even using the best of these techmiques, it is very unlikely that a speedup comparable to that
by using the matrices ©® and ¥ can be achieved in the computation. Thekey point, nevertheless, is the fact that
exploiting paralelism in multiplication of a vector by the matrices Oand ¥ involves a significantly leas amount of
data communication than performing the 2bove-lpentioned permutations. Therefore, one can expect a much better
overall performance as a result of this tradeoff.

We can aso introduce additional higher level parallelism in the computation by an appropriate algorithmic
modification as follows. An aternative second-order approximation of the matrix e?2t is given by

—

pAt _

T A I R O o((A1)°) (5.17)

N

from which, a second-order, stable, temporal approximation of (2.12) is obtained as
- . _ . 1, .
Q™ = 1(8A6,A:emym + o BE A1 A5 81)QU™ 1) +§(1 (m)+ plm=DyAq m=1toM (5.18)

Note that the matrix €A% At can be obtained from e &' ly simply replacing o with 2« ie.

20 in matrix © given by (4.5). Defining

* by replacing o with

~ . A, At HE, A1
My = e e and My = P01 AS,AL
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ng) o My QU= (5.19a)

m " 1 Wm Wmi—
Q(m) - Qg )_‘ Q; )_} 5(}«\ ),* ]4( 1))A1 (5196)

Q) = e~ 8EAtQm) and  Fl) - %c $aeat(plm) 4. plm- DYAY m=11to M (5.22)

Q(m) - CHZ,,AICA:?,A!Q(m-—»I) + F0m) mz= l1to M
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Fipure 1: Computational Mesh and Broundaries
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